Kernel Based Algorithms for Mining Huge Data Sets: Supervised, Semi-supervised, and Unsupervised Learning - Studies in Computational Intelligence - Huang, Te-ming (The University of Auckland) - Boeken - Springer-Verlag Berlin and Heidelberg Gm - 9783642068560 - 25 november 2010
Indien omslag en titel niet overeenkomen, is de titel correct

Kernel Based Algorithms for Mining Huge Data Sets: Supervised, Semi-supervised, and Unsupervised Learning - Studies in Computational Intelligence 1st Ed. Softcover of Orig. Ed. 2006 edition

Prijs
€ 97,99

Besteld in een afgelegen magazijn

Verwachte levering 8 - 16 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

Ook verkrijgbaar als:

This is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction and shows the similarities and differences between the two most popular unsupervised techniques.


260 pages, 19 black & white tables, biography

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 25 november 2010
ISBN13 9783642068560
Uitgevers Springer-Verlag Berlin and Heidelberg Gm
Pagina's 260
Afmetingen 156 × 234 × 14 mm   ·   394 g
Taal en grammatica Engels