Sparse Learning Under Regularization Framework: Theory and Applications - Michael R. Lyu - Boeken - LAP LAMBERT Academic Publishing - 9783844330304 - 15 april 2011
Indien omslag en titel niet overeenkomen, is de titel correct

Sparse Learning Under Regularization Framework: Theory and Applications

Prijs
€ 50,99

Besteld in een afgelegen magazijn

Verwachte levering 1 - 9 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

Regularization is a dominant theme in machine learning and statistics due to its prominent ability in providing an intuitive and principled tool for learning from high-dimensional data. As large-scale learning applications become popular, developing efficient algorithms and parsimonious models become promising and necessary for these applications. Aiming at solving large-scale learning problems, this book tackles the key research problems ranging from feature selection to learning with mixed unlabeled data and learning data similarity representation. More specifically, we focus on the problems in three areas: online learning, semi-supervised learning, and multiple kernel learning. The proposed models can be applied in various applications, including marketing analysis, bioinformatics, pattern recognition, etc.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 15 april 2011
ISBN13 9783844330304
Uitgevers LAP LAMBERT Academic Publishing
Pagina's 152
Afmetingen 226 × 9 × 150 mm   ·   244 g
Taal en grammatica Duits  

Meer door Michael R. Lyu

Alles tonen