Measuring Glycemic Variability and Predicting Blood Glucose Levels: Using Machine Learning Regression Models - Nigel Struble - Boeken - LAP LAMBERT Academic Publishing - 9783659168697 - 22 april 2014
Indien omslag en titel niet overeenkomen, is de titel correct

Measuring Glycemic Variability and Predicting Blood Glucose Levels: Using Machine Learning Regression Models

Prijs
€ 47,99

Besteld in een afgelegen magazijn

Verwachte levering 31 dec. - 8 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

This work presents research in machine learning for diabetes management. There are two major contributions:(1) development of a metric for measuring glycemic variability, a serious problem for patients with diabetes; and (2) predicting patient blood glucose levels, in order to preemptively detect and avoid potential health problems. The glycemic variability metric uses machine learning trained on multiple statistical and domain specific features to match physician consensus of glycemic variability. The metric performs similarly to an individual physician?s ability to match the consensus. When used as a screen for detecting excessive glycemic variability, the metric outperforms the baseline metrics. The blood glucose prediction model uses machine learning to integrate a general physiological model and life-events to make patient-specific predictions 30 and 60 minutes in the future. The blood glucose prediction model was evaluated in several situations such as near a meal or during exercise. The prediction model outperformed the baselines prediction models, and performed similarly to, and in some cases outperformed, expert physicians who were given the same prediction problems.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 22 april 2014
ISBN13 9783659168697
Uitgevers LAP LAMBERT Academic Publishing
Pagina's 100
Afmetingen 150 × 6 × 226 mm   ·   167 g
Taal en grammatica Duits