Data Mining-approaches to Mine Frequent Patterns: Data Mining Strategies for Transactional Databases Containing Maximal Frequent Patterns - Bharat Gupta - Boeken - LAP LAMBERT Academic Publishing - 9783659110320 - 26 april 2012
Indien omslag en titel niet overeenkomen, is de titel correct

Data Mining-approaches to Mine Frequent Patterns: Data Mining Strategies for Transactional Databases Containing Maximal Frequent Patterns


Ontvang een e-mail zodra het artikel beschikbaar is
Heb je een profiel? Inloggen
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

In data mining, Association rule mining becomes one of the important tasks of descriptive technique which can be defined as discovering meaningful patterns from large collection of data. Mining frequent itemset is very fundamental part of association rule mining. Many algorithms have been proposed from last many decades including horizontal layout based techniques, vertical layout based techniques, and projected layout based techniques. But most of the techniques suffer from repeated database scan, Candidate generation (Apriori Algorithms), memory consumption problem (FP-tree Algorithms) and many more for mining frequent patterns. As in retailer industry many transactional databases contain same set of transactions many times, to apply this thought, in this thesis present a new technique which is combination of present maximal Apriori (improved Apriori) and FP-tree techniques that guarantee the better performance than classical aprioi algorithm. Another aim is to study and analyze the various existing techniques for mining frequent itemsets and evaluate the performance of new techniques and compare with the existing classical Apriori and FP- tree algorithm.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 26 april 2012
ISBN13 9783659110320
Uitgevers LAP LAMBERT Academic Publishing
Pagina's 64
Afmetingen 150 × 4 × 226 mm   ·   104 g
Taal en grammatica Engels