Metric Invariants for Camera Calibration: Designing Algorithms from Algebraic Rank Analysis - In So Kweon - Boeken - LAP LAMBERT Academic Publishing - 9783846509883 - 4 oktober 2011
Indien omslag en titel niet overeenkomen, is de titel correct

Metric Invariants for Camera Calibration: Designing Algorithms from Algebraic Rank Analysis

Prijs
€ 57,99

Besteld in een afgelegen magazijn

Verwachte levering 7 - 15 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

Reconstructing a metric structure of a scene from images has been one of the important topics in computer vision. In this book, we focus on a simple diagonal rank-deficient form of a 2D metric invariant, a conic dual to the circular points. By manipulating image features to constrain the simple form algebraically, the metric reconstruction can be achieved. We start from second order curves such as concentric circles or confocal conics to be used as basic features. By simply subtracting them, affine and metric properties of a plane are recovered. The geometric meanings of the resulting subtraction matrices are also investigated. The idea of algebraically manipulating features extend to an ``addition method'' using human recognizable features such as a rectangle. Its parallelism and orthogonality enables us to obtain information of the scene structure. As a generalization, we propose a framework to unify the geometric constraints used in camera calibration and in metric reconstruction. We show that scene constraints can be converted into constraints of cameras, and that a flexible algorithm to metric-reconstruct scenes from images can be developed in the proposed unified framework.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 4 oktober 2011
ISBN13 9783846509883
Uitgevers LAP LAMBERT Academic Publishing
Pagina's 196
Afmetingen 150 × 11 × 226 mm   ·   310 g
Taal en grammatica Duits  

Meer door In So Kweon

Alles tonen