Similarity Function with Temporal Factor in Collaborative Filtering: Data Mining - Chhavi Rana - Boeken - LAP LAMBERT Academic Publishing - 9783659179952 - 29 juli 2012
Indien omslag en titel niet overeenkomen, is de titel correct

Similarity Function with Temporal Factor in Collaborative Filtering: Data Mining

Prijs
€ 42,99

Besteld in een afgelegen magazijn

Verwachte levering 6 - 13 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

Similarity function is the key to accuracy of collaborative filtering algorithms. Adding a time factor to it addresses the problem of handling the web data efficiently as it is highly dynamic in nature. The data used in collaborative filtering algorithms is collected over as long period of time, in the form of feedbacks, clicks, etc. The interest of user or popularity of an item tends to change as new seasons, moods or festivals. The similarity function with temporal factor can efficiently handle the dynamics of web data as it captures and assigns weightage to the data. More recent data is given more weightage when similarity is calculated. in this way, the recent trends and older and obsolete data values are discarded when new unobserved items are predicted using collaborative filtering algorithms. Hence, better results and more accuracy.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 29 juli 2012
ISBN13 9783659179952
Uitgevers LAP LAMBERT Academic Publishing
Pagina's 56
Afmetingen 150 × 3 × 226 mm   ·   102 g
Taal en grammatica Duits