Vertel uw vrienden over dit artikel:
Missing Data Problems in Machine Learning: Outline and Contributions Robin Parker
Missing Data Problems in Machine Learning: Outline and Contributions
Robin Parker
Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis.
| Media | Boeken Paperback Book (Boek met zachte kaft en gelijmde rug) |
| Vrijgegeven | 7 juni 2010 |
| ISBN13 | 9783639212280 |
| Uitgevers | VDM Verlag Dr. Müller |
| Pagina's | 168 |
| Afmetingen | 225 × 9 × 150 mm · 254 g |
| Taal en grammatica | Engels |
Bekijk alles van Robin Parker ( bijv. Paperback Book en Hardcover Book )
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld