Missing Data Problems in Machine Learning: Outline and Contributions - Robin Parker - Boeken - VDM Verlag Dr. Müller - 9783639212280 - 7 juni 2010
Indien omslag en titel niet overeenkomen, is de titel correct

Missing Data Problems in Machine Learning: Outline and Contributions

Prijs
€ 68,99

Besteld in een afgelegen magazijn

Verwachte levering 15 - 26 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 7 juni 2010
ISBN13 9783639212280
Uitgevers VDM Verlag Dr. Müller
Pagina's 168
Afmetingen 225 × 9 × 150 mm   ·   254 g
Taal en grammatica Engels