Testing Latent Variable Interaction Effect: Dealing with Data Nonnormality and Model Misspecification - Shaojing Sun - Boeken - VDM Verlag - 9783639173666 - 26 juni 2009
Indien omslag en titel niet overeenkomen, is de titel correct

Testing Latent Variable Interaction Effect: Dealing with Data Nonnormality and Model Misspecification

Prijs
€ 60,99

Besteld in een afgelegen magazijn

Verwachte levering 14 - 23 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst

The book discusses the effects of data nonnormality, model misspecification, sample size, and effect size on testing latent variable interactions through an inspection of the Jöreskog and Yang's (1996) model. Mattson's (1997) method was used to generate nonnormal latent variables in this Monte Carlo study. One covariance parameter was deleted for investigating the influence of misspecified models. The simulation involved a balanced experimental design, with 3 × 2 × 3 × 3 = 54 combinations. Data analysis focused on bias of estimating parameters, standard errors, model fit indexes. Variance partition was conducted to further examine the unique and combined influence of the factors (i.e., data nonnormality, model specification, sample size, effect size). Results indicated that data nonnormality and model misspecification had large effects on fit indexes (e.g., SRMR, RMSEA). Also, severe nonnormality led to a large bias of estimating the interaction effect. Implications of and recommendations for testing latent variable interactions are discussed.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 26 juni 2009
ISBN13 9783639173666
Uitgevers VDM Verlag
Pagina's 124
Afmetingen 150 × 220 × 10 mm   ·   190 g
Taal en grammatica Engels